Comparison of Mass Spectrometry Sample Preparation Methods

	Pyrolysis GC/MS (double-shot or single-shot method)		Thermal desorption/thermal decomposition DART-MS			
Ionization principle	♦ Components thermally desorbed or pyrolyzed in the furnace are separated in the column and ionized by EI, CI, etc. in the ionization chamber		◆Sample heated by ionRocket is vaporized by thermal desorption or pyrolysis, and ionized by excited He			
Sample to be measured	 ◆Liquid, solid, powder ◆High polarity compor ◆By quadrupole MS, a 	r inents are difficult to detect available at <i>m/z</i> 1000 or less		 ◆Liquid, solid, powder ◆High polarity components can be detected ◆Detectable up to <i>m/z</i> 2000 or higher 		
Sample preparatio n	 No pretreatment req Reactive pyrolysis Go reagent is also useful 	uired C/MS with Methylation (esters)		 No pretreatment required Reactive pyrolysis GC/MS v agents is also effective (esterinformation can be obtained) 	with methylating cers), polymer d without treatment	
Qualitativ e Analysis	 Identification of polymer species using pyrograms is possible Library search is available by EI mass spectra, however, it is very difficult to identify peaks with no hits (Reaction products such as degradation products and coloration causing components cannot be identified or structurally analyzed) 		 No database such as pyrogram collection For homopolymers, oligomeric components with repeating structures can be identified. Blended polymers can be identified by KMD analysis By combining with QTOF, etc., reaction products such as degradation products and coloration causing components can be identified or structurally analyzed by accurate mass measurement and MS/MS measurement. 			
Others	 Investigation of separation conditions (column selection, temperature rise conditions, etc.) is required * Some components may be irreversibly adsorbed on the separation column. Cold spots exist (injection port, column oven, ion source) Measurement time: approx. 2 hours (double shot method) 		 No need to consider separation conditions No cold spots Measurement time: approx. 7 min (hold at room temperature for 1 min → 100°C/min → 600°C) 			
EGA-MS	 ♦Nylon 6,6 ⇒ Fragment ions are mainly detected by EI. 	$\begin{array}{c} & 1.00 \\ 0.75 \\ 0.50 \\ 0.25 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.75 \\ 0.50 \\ 0.25 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.75 \\ 0.50 \\ 0.25 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.75 \\ 0.50 \\ 0.25 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.75 \\ 0.25 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.75 \\ 0.25 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.75 \\ 0.25 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.26 \\ 0.00 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.26 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ \end{array} \begin{array}{c} & 1.00 \\ 0.26 \\ 0.00 \\ 0.0$	x 600 - 470, 494 500	♦ Nylon 6,6 \Rightarrow Molecular-related ions are mainly detected by DART-MS.	Intens. * 124 1.0 0.8 0.6 0.4 0.2 1.0 0.8 0.6 0.4 0.2 1.0 0.8 0.6 0.4 0.2 0.7 1.0 0.8 0.6 0.4 0.6 0.4 0.5 0.4 0.8 0.6 0.4 0.5 0.4 0.8 0.6 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 200 300 400 500 600 100 200 300 400 500 600 TDP/DART-MSC 2 & 97 = € 75 Δ 590.6255 600 700 800 m/z