Introduction
Industrial acrylic polymers are often synthesized with various comonomers to realize desired functions and physical properties. Since physical properties are affected by not only the average comonomer composition but also its distribution, molecular characterization of polymers is important from the viewpoint of controlling physical properties

In this study, we investigated an ethyl acrylate (EA)-butyl acrylate (BA) copolymer by thermal desorption/pyrolysis (TDP) /DART-MS which car rapidly detect both thermally desorbed intact oligomers and oligomeric pyrolysis products of polymers. The observed results were compared with those by pyrolysis (Py-)GC/MS and MALDI-MS.

Experimental
Sample: EA-BA copolymer produced through random-copolymerization
the feed monomer ratio of $\mathrm{EA}: \mathrm{BA}=\mathrm{ca} .1: 1$

Analytical methods:

Py-GC/MS
The largest pyrolysis products were trimers. The relative peak intensities among the trimers correspond to a random distribution with $E A / B A=46 / 54$ (Table 2, Fig. 8), which is close to the feed monomer ratio.

Fig. 7 Pyrogram of EA-BA copolymer using Py-GC/MS ${ }^{2)}$
SEC-MALDI
Intact oligomers of this sample were observed using SEC fractionation. The KMD plot showed a parallelogram-like dot distribution, which is the typical pattern of random copolymers (Fig. 10). Compositional distribution showed normal distribution with the maximum around EA/BA = 4/4 (Fig. 9 and Table 3). From compositional distributions of intact oligomers estimated, it was estimated that this fraction was composed of random oligomers with $E A / B A=46 / 54$ (Fig. 11), also close to the feed monomer ratio

